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NUMERICAL SOLUTIONS OF THE KINEMATIC
DYNAMO PROBLEM
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The expansion method of Bullard & Gellman is used to find numerical solutions of the induction equa-
tion in a sphere of conducting fluid. Modifications are made to the numerical methods, and one change
due to G. O. Roberts greatly increases the efficiency of the scheme. Galculations performed recently by
Lilley are re-examined. His solutions, which appeared to be convergent, are shown to diverge when a
higher level of truncation is used. Other similar dynamo models are investigated and it is found that these
also do not provide satisfactory steady solutions for the magnetic field.

Axially symmetric motions which depend on spherical harmonics of degree n are examined. Growing
solutions, varying with longitude, ¢, as ¢4, are found for the magnetic field, and numerical convergence
of the solutions is established. The field is predominantly an equatorial dipole with a toroidal field sym-
metric about the same axis. When # is large the problem lends itself to a two-scale analysis. Comparisons
are made between the approximate results of the two-scale method and the numerical results. There is
agreement when 7 is large. When 7 is small the efficiency of the dynamo is lowered. It is shown that the
dominant effect of a large microscale magnetic Reynolds number is the expulsion of magnetic flux by
eddies to give a rope-like structure for part of the field. Physical interpretations are given which explain
the dynamo action of these motions, and of related flows which support rotating magnetic fields.

1. INTRODUCTION

The dynamo problem can be stated: ‘Can a body of homogeneous conducting fluid maintain
a magnetic field indefinitely against resistive losses?’ It is widely believed that the Earth’s mag-
netic field is maintained by some dynamo mechanism acting in the highly conducting liquid core.
There are other examples of dynamos in astrophysics; the sun possesses a magnetic field which
is known quite accurately as a function of space and time, and E. N. Parker (1971) has attempted
to explain the galactic magnetic field by means of a dynamo mechanism.

This paper is concerned only with the kinematic dynamo problem. In this the fluid velocity,
u, is specified and one calculates the resulting magnetic field, ignoring the back-reaction of the
Lorentz force on the fluid flow.

1 Now at Cooperative Institute for Research in Environmental Sciences, University of Colorado/National
Oceanic and Atmospheric Administration, Boulder, Colorado 80302, U.S.A.

Vol. 274. A. 1241. 35 [Published 2 August 1973

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ% )2

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. STORS
Www.jstor.org


http://rsta.royalsocietypublishing.org/

'\
/N

JA §

Y |

AL A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

N

0\

y \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

494 D. GUBBINS

With the usual assumptions (P.H.Roberts 1967), Maxwell’s equations give the induction
equation: 0BJot = curl (u x B) + AV2B (1.1)
and divB = 0, (1.2)

where A = (ux)~1, B is the magnetic field, « the electrical conductivity and x the permeability.
Itis assumed that # and k are uniform throughout the fluid. If u is prescribed, then (1.1) is linear
in B.

Let % and % be typical values of « and r. Scaling ¢ with (F2u«)~1, the diffusive time scale,

(1.1) becomes OB/t = Rucurl (u x B) + V2B, (1.3)

where Ry = %% uk, the magnetic Reynolds number.

The problem of most astrophysical and geophysical interest is when the conducting fluid is
contained in a sphere surrounded by an insulator. All components of B must be continuous
across the bounding surface of the conductor, and there can be no sources of field in the insulator
or at infinity. The last condition reduces to

|B| = O(r3) as r— o,
where the origin of coordinates is inside the conductor.

Cowling (1934) proved that an axially symmetric field cannot be maintained by any velocity.
Later, however, Backus (1958) and Herzenberg (1958) gave analytic proofs that fluid motions
could support magnetic fields. The general investigation of the dynamo action of fluid motions
is a very complicated problem, and the only practicable method is to solve the equations numeric-
ally on a computer. Elsasser (1946a, b, 1947), Bullard & Gellman (1954) and E. N. Parker (1955)
pioneered work on the dynamics of the core and on physical ideas of dynamo action. Numerical
solutions were attempted by Bullard & Gellman, and although they obtained evidence of a
convergent, steady solution, the recent work of Gibson, P. H. Roberts & Scott (1969) and Lilley
(1970) has shown that their solution does not converge when a more accurate representation is
taken for the field.

Braginskil (1965) considered large magnetic Reynolds number dynamos with velocities and
magnetic fields which are almost axially symmetric, and found that the Bullard—-Gellman dynamo
could not be expected to support such a field in the limit:

Ry - o0, R} > finite limit,

where v is the ratio of (asymmetric) poloidal motion to (symmetric) toroidal motion. Tough
(1967) extended the analysis to the next order in R} (see also Soward 1971, 1972). D. 1. Black
(1969, personal communication) proved that both these statements apply to any velocity with the

uy(4) = —uy(—¢) (1.4)
for some choice of axes, where ¢ is the third sphetical coordinate and u;, the meridional part of
the non-axially symmetric velocity. Lilley (1970) modified the Bullard—Gellman motion by
adding an extra term to &’ to remove the symmetry of (1.4), and obtained results which were,
although not entirely convincing, much better than those using the original motion.

It is possible to obtain approximate solutions to the kinematic problem by the multiple scale
method (Steenbeck, Krause & Radler 1966). The field is separated into large and small scale
parts:

symmetry

B=B,+B.
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The solution is particularly simple when the microscale magnetic Reynolds number is small.

Making the assumptions
|B’| < |By,

|V2B'| ~ |V2B,| ~ | By|,

N . AIB'| = | Bol,
the induction equation gives
%9 = curl (u x B') +AV2B,, (1.5)
(By.V)u ~ AV2B, (1.6)

where the overbar denotes an average over a spatial extent large compared with the small scale,
and small compared with the large scale. These equations are much easier to solve than the full
induction equation.

This method has been used in a study of turbulence (Steenbeck ef al. 1966; Moffatt 1970) and
is related to the theory of periodic dynamos (G. O.Roberts 1970). For homogeneous, pseudo-
isotropic turbulence the e.m.f. & x B’ has the form & B,, where o is related to u. curlu, which has
been called the “helicity’ by Moffatt (1970). This production of current parallel to the mean
field is called the a-effect. The equation for the mean field is

0B,[dt = Rucurl (11, x By+aB,) + V2B, (1.7)

This equation has been solved numerically in a sphere by Braginskif (1964), Krause & Steenbeck
(1967), Steenbeck & Krause (19694, b), P. H. Roberts (1971) and P. H. Roberts & Stix (1972).
The work supports the view that a large-scale field can be maintained by the a-effect.

G. O.Roberts has investigated a class of spherical dynamos by solving the full induction
equation numerically (P. H. Roberts in Zmuda 1971). A grid-point method was used for the
solution; it is the first demonstration of dynamo action in a sphere that has been accomplished
numerically. Itis this result that dictated the choice of motions for the numerical work described
in§3.

The numerical method used in this paper is essentially the same as that of Bullard & Gellman
(1954). The induction equation is replaced by a set of ordinary differential equations by expand-
ing the velocity and magnetic field in vector spherical harmonics:

7o, TWoY  T()or
_{ > rsin00o¢’ r 00 )’

S___{n(nr-:l) sy, LT asaY}’

TOoro0’ rsin ordg

whete (r, 0, ¢) are the spherical coordinates, ¥ denotes the harmonic:
Y90, ) = Pi(cos0) | or) mg

and P™ is a Legendre function with the usual (Ferrer) normalization. The properties of § and T
are summarized in Bullard & Gellman. The differential equations resulting from the induction

equation are
A 03S,
r2#__r2_ar__27+y(7+ 1) Sy = Rm 062:,6’ (SocSﬁS'y) + (T;T'ﬂSy) + (SOLT;S‘S')/) (18)

35-2
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496 D. GUBBINS

and a similar equation for 77, where«, £ and 7y are blanket labels representing 7, m, c and s. The
quantities in brackets are called interaction terms. For example (S,5,S,) represents the produc-
tion of S, field from S, field by the S, velocity. They are given explicitly in Bullard & Gellman
(1954, eqn. 24) and depend on the Gaunt and Elsasser integrals (Albasing, Bell & Cooper 1963;
Gibson et al. 1969; James 1972).

If certain selection rules are not obeyed, the Gaunt or Elsasser integrals vanish, and conse-
quently only some field harmonics are related by a specific velocity harmonic. The selection rules
can be applied systematically and relate the various terms in the expansion for B. The resulting
interaction diagrams are very instructive in understanding how the dynamo works. Sometimes
the interaction diagram for a particular choice of motion splits into completely unrelated parts.
For example, if u is axially symmetric, m, is zero and the relevant integrals are zero unless
my = m, (selection rules 1(c) and 2(¢), Bullard & Gellman). This means there is a set of
interaction diagrams, one for each value of m,,, and solutions for the field exist which are depen-
dent only on cosm, ¢ or sinm,, ¢.

Sometimes it is expedient to use complex harmonics, defined by

Yo, ¢) = Pr(cosb) eimd,

The selection rules are modified; for axially symmetric u rules 1(c), 1(d), 2(c), 2(d) and 2(e)
are replaced by the condition:
mﬂ = m},.

In §2 steady fields are sought. However, steady solutions of the dynamo problem may not
always exist. A solution to the time-dependent problem is more likely to yield meaningful results
than a search for a steady solution in which Ry is calculated, and for the solutions in §§3 and 4
we write the time dependence of B in the form:

B =ReBert
with p complex. This leads to the equation:
pB = Ry curl (u x B) + V2B,

Ry is chosen and p found as an eigenvalue. When Ry, is zero this equation becomes the vector
diffusion equation, which has an analytical solution. The slowest decaying mode in a sphere is a
dipolar field based on the spherical Bessel function 77, (nr). The decay rate is — =2, This solution
was used to check the numerical work. By increasing R, from zero, it is usually possible to follow
the decay rate away from this analytical value, and the real part of p will become positive for a
functioning dynamo. As Ry increases, one expects the field to become more complicated (or
small scale), because large magnetic Reynolds numbers do not suppress small-scale fields. Such
fields will be more difficult to represent numerically and the rounding errors increase (see below).
By increasing Rm from zero it should be possible to detect the point at which the numerical solu-
tion becomes unreliable.

The numerical solution is effected by truncating the series for u and B at some point and using
first-order finite difference formulae for the radial derivatives. This yields an algebraic eigen-
value problem with a banded matrix, with R, or p as eigenvalue. The cigenvalue nearest to some
chosen initial value is found by the inverse iteration method (Isaacson & Keller 1966). The pro-
cedure for using the inverse iteration method with banded matrices is described in detail by
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Wilkinson (1965), but for the present problem we use a modification due to G. O. Roberts (1972),
in which the matrix inversion is performed without interchange of columns. This method retains
the banded structure of the matrices, but rounding errors are liable to be large, particularly when
the magnetic Reynolds number is large.

The advantages of the inverse iteration method over the QR algorithm used by Lilley are a
factor of 1n; in storage, where #; is the number of radial grid points, and a factor of 872 in time
even if only one of the eigenvectors is found by means of the QR algorithm. The savings in time
are enormous in any case, for one of the calculations in § 3 by a factor of 105,

The solution of the eigenvalue problem yields the magnetic field (eigenvector) as well as the
magnetic Reynolds number or the growth rate (eigenvalue), depending on whether a steady or
a time-dependent solution is sought. The eigenvector contains all the available information about
the mechanism maintaining the field. If the solution decays, the structure can sometimes show
why it decays. Itis therefore very desirable to examine the field for any solution. In many numeri-
cal studies the field which is maintained is not discussed, presumably because of the difficulty
of presenting it in a concise way. A further reason for studying the eigenvector is to test conver-
gence of the solution. It is usual to test convergence by looking at the change in the eigenvalue
when the degree of truncation of the harmonic series and the number of grid points are increased
(Lilley 1970; Gibson & Roberts 1969). R. L. Parker (1969, private communication) has suggested
that the harmonics that are neglected because of the truncation of the field series may be estima-
ted individually by perturbation theory. The theory may be applied to the eigenvalue problem
of Bullard & Gellman for which the matrices are sparse but not banded. When the number
of harmonics, representing the field is increased, the first and second order changes to the eigen-
value and eigenvector can be calculated explicitly (Gubbins 1972). An interesting result is that
the only changes in the solution to first order in the neglected terms in the matrices are those
in the new harmonics that enter because of the higher degree of truncation. The first-order
change in the eigenvalue is zero. A similar result has been pointed out by Gibson & Roberts
(19677). The fluctuations in the eigenvalue are therefore a very poor test of convergence of the
numerical work, and a much better test is to look at the magnitudes of the highest harmonics in
the eigenvector. Perturbation theory could also be used to find approximate values for the higher
harmonics.

2. LILLEY’S DYNAMO AND OTHER BULLARD-GELLMAN DYNAMOS

This work was originally intended to be an extension of that of Lilley (1970). Although his
results were not entirely convincing, it seemed likely that the calculations could be made to con-
verge if better computing methods were used. The calculations do not converge, as is shown very
clearly in this section. The results described in this section are entirely negative, but they are
important in outlining the numerous difficulties involved, and it was these failures that prompted
the approach of §§3 and 4.

Lilley (1970) chose the velocity: — u = T7+ 8%+ 8%,
where the vector harmonics are based on the radial functions:

Ty(r) = 10r%(1 —r?)

S%(r) = r3(1—r2)?2

S¥(r) = 1.6r3(1—4r2)2 if r<
=0 if r>

(2.1)

.5
b
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This motion is the same as that of Bullard & Gellman with an extra $% term added to destroy
the symmetry of equation (1.4). Some care is needed in the choice of the extra $3(r) radial
function. For example if the radial functions for the $%° and §% harmonics are the same or
multiples of each other, the plane of antisymmetry (equation 1.4) is only rotated by the addition
of §% and not destroyed.

Lack of computer time and storage restricted Lilley’s calculation. With the inverse iteration
method one can not only carry the calculations to a higher degree of accuracy, but also explore
many more choices of the velocity. This is important because the difficulties in solving the induc-
tion equation arise out of insufficient knowledge for a suitable choice for w.

The method of solution used here is to calculate the Rm required for a steady state. The most
unstable mode is that corresponding to the smallest real value of Ry. The inverse iteration method
can be made to avoid complex roots simply by using real arithmetic. A rough estimate of the
required eigenvalue has always been known in advance, and this was used to start the iteration.
It is a simple matter to ensure that the eigenvalue found is the largest real one by starting the
iteration from some very large real number.

TaBLE 1. EIGENVALUES FOR LILLEY’S DYNAMO

{ is the maximum allowed degree of the harmonics and #, is the number of grid points used.

7, = 10 12 14 16 18 20 22 24 26 30 32

=2 22.7 — — — — —_— — — 26.0 — —_
3 12.2 — — 22.3 —_— — — — 39.9 — —

4 11.5 13.7 — — 19.5 21.1 22.6 23.9 25.0 — —

(21.2)
5 12,7 15.5 18.4 21.3 24.1 27.1 30.2 33.6 37.5 48.3 No
(21.3) solution
6 — — — 20.9 — — — — — — —

Table 1 contains the eigenvalues found for Lilley’s dynamo by the inverse iteration method.
These results can be compared with Lilley’s to check the accuracy. In fact there are some small
differences because of some minor errors in Lilley’s computer program, but the discrepancies
are not significant. Apart from these differences, the values above and to the left of the solid
line agree with Lilley’s results. The numbers in parentheses were computed using double pre-
cision to check the rounding errors. Despite fears to the contrary, the rounding errors are not
severe. The most significant part of this table is the / = 5 line. Along this row, as more grid
points are used in the radial direction, the second differences are more than doubling at each
step. For 32 radial divisions the method failed to converge on any real eigenvalue between 0 and
600. Clearly thisis not a convergent solution. Poor convergence for this model has also been noted
by P. H. Roberts (1972).

The magnetic field is shown in figure 1 at two truncation levels: n; = 16, [ = 6 and n, = 30,
[ = 5. The first example is the case for which Lilley found the eigenvalue but not the eigenvector;
the second solution demonstrates the spectacular divergence. Any solution to the induction equa-
tion may be multiplied by an arbitrary constant, and therefore in making comparisons such as
that of figure 1 it is necessary to normalize the eigenvector in some way. Any choice of normal-
ization will be arbitrary to a certain extent; the method used here is to make the sum of the abso-
lute values of the components of the eigenvector & up to degree 5 proportional to the number
of components. One could alternatively use the sum of squares of the components, or match
the maximum values.
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500 D. GUBBINS

It is also desirable to standardise the definition of magnetic Reynolds number. If it is based
on the radius of the sphere and sup |u], all the values in table 1 must be multiplied by 2.86. This
brings the typical value of the magnetic Reynolds number for Lilley’s dynamo to nearer 50
than 20.

The eigenvectors in figure 1 have irregular behaviour near r = 0.5 because the components of
the $% velocity have discontinuous derivatives there. The discontinuity in the §% velocity
has been removed in the following three models by altering the radial functions of the har-
monics.

Model 1
Ti(r) = 10r2(1 —71?),

S() = (1=
SB(r) =r5(1—r%)2

The eigenvalues are shown in table 2. There is no sign of convergence, and it seems unlikely that
the convergence will be any better at higher truncation levels.

Model 2
Ty(r) = 1074,

S3e(r) = r5—18,
S$%(r) = 0.07sin® (nr).

The eigenvalues for this model are shown in table 2. When harmonics up to degree 6 were included
no plausible solution was found at all. However, the representation of the solution in the radial
direction is excellent.

Model 3
Ti(r) = 10r2(1—19),

SP() = r(1=r)%

SB(r) = 0.07sin’ (2rnr) if r< 0.5
=0 if r>0.5.

The eigenvalues are shown in table 2. The convergence is no better than that for Lilley’s dynamo,
and for two calculations no plausible solution was found at all. The eigenvector also shows
irregular behaviour, but it is not included here because the convergence of the eigenvalue is so
poor.

None of these models exhibit satisfactory convergence, indeed the convergence is worse than
Lilley’s in all three cases. Model 3 was chosen to resemble Lilley’s motion, all the $% motion
being concentrated into the inner half of the sphere, but even this shows very bad convergence.

Bullard & Gellman (1954) proposed that a meridional field could be created from their
large toroidal field by a rising (or falling) and twisting motion. Although they argued that their
motion did have this property, it seems unlikely in view of Braginskii’s results. Presumably Lilley’s
velocity does have this property, but it is not obvious from simply visualizing the flow. Model 4 is
an attempt to put in the rising and twisting motion explicitly.
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Model 4
u = T9+SP+ T,

with Iy(r) = 104,
S%(r) =r5—18,
T%(r) = 0.07sin® (nr).

This model was first suggested by Bullard & Gellman (1954). It has a number of notable features.
It is a simple version of the cyclonic motions envisaged by Parker (1955); it is consistent with
dynamics governed by Coriolis forces, and it satisfies Braginskiis since-cosine criterion. In this
case if Braginskil’s rule is not satisfied, as for example in the motion T9+ 8%+ T35, the ‘twists’
(T%) occur midway between rising and falling currents. That such a motion would not work
as an efficient dynamo is in agreement with ideas about helicity and the results from periodic
dynamos. Model 4 has a positive preferred sense of helicity in the northern hemisphere, and a
negative preferred sense in the southern hemisphere. The eigenvalues are shown in table 2.
The convergence is no better than for any of the other models.

TABLE 2. VALUES OF THE CRITICAL MAGNETIC REYNOLDS NUMBERS FOR VARIOUS LEVELS OF
TRUNCATION FOR THE FOUR MODELS STUDIED IN §2

{ is the maximum allowed degree of the harmonics and #, is the number of radial grid points used.

n, = 10 14 16 24 30
model 1

=2 26.0 — — —_ —_

3 32.5 42.3 — 54.4 —_

4 — 28.3 — 29.8 —

5 91.4 —_ —_ —_ —
model 2

=2 15.9 — 18.3 19.1 —_

3 — — 28.0 28.1 —_—

4 —_— —_ ) 35.2 36.9 —_

5 — — 48.4 48.9 49.2

6 — —_ None — —_
model 3

=3 21.6 — 26.8 14.8 —_

4 25.7 — none 17.1 —_

5 31.3 —_ — 25.9 24.7

6 — _ none —_ —
model 4

=3 — — 30.9 30.0 —_—

4 — —_ none none —_—

5 — — 136.5 —_— —_

Very few conclusions can be drawn from the failures outlined in this section. Solutions corre-
sponding to large values of the magnetic Reynolds number are more irregular than those for small
magnetic Reynolds number, which was expected. Solutions corresponding to values of Ry, larger
than about 200 (based on sup |¢|) were not adequately represented by the 30 grid points and 24
harmonics available.

Lilley’s solution collapsed as more radial grid points were used, but it seemed satisfactory
when more harmonics were included. This poses the problem of ensuring that the solution is
receiving adequate representation in all three space variables; 7,0 and ¢. There is normally

36 Vol. 274. A.
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502 D.GUBBINS

no advantage in having a much better representation in one variable rather than any other.
Series of orthogonal functions generally give a more accurate representation of smooth functions
than grid points, and in this case the functions will be smooth provided Rn, is not large and there
are no artificial discontinuities such as Lilley’s. An additional advantage of the inverse iteration
method is that it is easier to be generous with grid points than with harmonics, and this has been
done for all the calculations.

FIcure 2. Streamlines of the flow for n = 2.

3. AXIALLY SYMMETRIC DYNAMOS

Now consider two scale dynamos in which the velocity, varying over a small length scale, sup-
ports a magnetic field that varies mainly over distances large compared with the length scale of
the velocity. There is also an essential part of the field that is small scale, which provides the
e.m.f. supporting the large scale field. Such dynamos are known to exist under certain conditions
in infinite fluids, and unlike Braginskii’s theory the two-scale method can be applied directly to
the numerical problem.

The fluid motion chosen has the form

u=eS,+T,,
with both harmonics based on the radial function:
—r2sin (nxr) tanh nw (1 —7). (8.1)

When theinduction equation is solved for any axially symmetric velocity, there is a set of linearly
independent solutions for the field, the components of each depending on one particular cos m¢
or sinmg for one value of the integer m, as was pointed out in § 1. The symmetry of the velocity
and this simple form for the field makes the calculations considerably easier because there are
fewer harmonics to be dealt with. This is a two-parameter (but not two-dimensional) problem.
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The field with m = 0is axisymmetric, and must decay with time because of Cowling’s theorem.
There is no reason to suppose, however, that fields with m % 0 cannot be supported. The solution
with m = 1 is studied here.

Figure 2 shows the streamlines for the flow defined by equations (3.1) with » = 2. The stream-
lines are confined within any one of the cells, and are helices wrapped around the axis of sym-
metry. In general there are n cells radially and n between 6 = 0 and 6 = 7. Elements of the
fluid in adjacent cells move around the axis in opposite directions, but all the helices have the
same right-handed sense. The motion has a preferred sense of helicity (¢. curl u, where the over-
bar denotes an average over many cells) throughout the sphere. This is in contrast to Roberts’s
motion (Zmuda 1971) which has helicity with opposite signs in the upper and lower hemispheres.
Otherwise the two motions are very similar; this one fits into a sphere more satisfactorily, and the
differences could hardly be expected to influence the dynamo action drastically.

A two-scale analysis of the problem is possible when 7 is large. Childress (19770) has shown that
provided the length scale of the motion is sufficiently small compared with the dimensions of
the sphere, then the boundaries have no significant effect on the small-scale fields. We may there-
fore ignore the effects of the boundaries except in solving for the large-scale ficld. An averaging
procedure must be defined for any two-scale approximation, and the one appropriate here is
over an angle 0, and a radial distance r,, which define an area large compared with the size of
one of the cells, but small in relation to the whole sphere.

The procedure now is to solve equation (1.6) for the small scale field B’ in terms of u and B,
by some method such as Fourier transforming, and substitute back into equation (1.5) to solve
for B,. Following, for example, Moffatt (1970), the e.m.f. u x B’ may be written in the form:

(ux B'); = A By, (3.2)
where the tensor A is related to @ and the resistivity. For any homogeneous motion, such as
homogeneous turbulence or periodic motions, the tensor A is independent of position, provided
the right averaging procedure is used. For homogeneous isotropic turbulence A reduces to the
form ad;, but this is not the case for periodic motions in general because they are not isotropic.
As an example consider the motion

u=Uxy)e,+ecurl[U(x,y)e,], (3.3)
where U(x,y) = uycos (kx +ky) cos (kx —ky).
This gives the tensor (G. O. Roberts 1970):
1 0 0
A=cl0 1 0>, (3.4)
0 0 O

where the overbar denotes an average over one wavelength. In this case B, has no z-component,
and this form for A can be replaced by &d,; for the purpose of calculating the mean e.m.f. (3.2).
However, the choice Ulx,y) = ugcos (kyx+kyy) cos (kyx—k, 1),
with £, # k, does not give a diagonal tensor.

It is possible to apply a similar analysis to the spherical harmonic motion, but a simple form
foru x B’ does not emerge. However, the analysis can be used in effecting approximate numerical
solutions, and this is discussed later in this section. Also it is still reasonable to suppose that the
dynamo mechanism acting is one in which a current is produced parallel to the mean field B,.

36-2
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With the m = 1 solution, the first degree harmonics are St and T}, an equatorial dipole and a
toroidal field symmetric about the same axis. Ifan ‘e-effect’ is operating, T7will be produced from
81 and vice versa. One may therefore expect the field to consist predominantly of these two
harmonics, with a smaller field varying on the same length scale as the velocity.

These theoretical considerations are useful in finding the rough form of the expected solution,
but they only apply in the limit # — 00, and therefore n must be chosen as large as possible. On the
other hand, for a numerical solution it is essential to represent the velocity and the small scale field
adequately. The available computing facilities made 6 the largest value of n that could be dealt
with.

Three dynamo models have been chosen to study the convergence of the scheme, with zn = 6,
4 and 2. e was taken as 2 for n = 6 and n = 4, and 4 for n = 2; the importance of this parameter
will be discussed later.

The solution for Ry = 0 was compared with the analytical value. Three significant figure
accuracy was obtained for the decay rate — =2 by the use of 100 grid points.

o

0

[
N

growth rate

|
o

-12

Ficure 3. Growth rate: o = Re (p) as a function of magnetic Reynolds number for the model
with n = 2, ¢ = ;.

TaBLE 3. EIGENVALUES 0" FOR THE MODEL WITH 7 = 2, € = % FOR R, = 60

The value in brackets was found by the use of double precision.

n = 25 51 75 99
I=6 1.10 1.31 — —
7 2.61 2.70 — —

8 2.49 2.60 — —

(2.61)

9 1.86 2.01 — —

10 1.97 2.11 — —

11 2.11 2.24 — —

12 2.10 2.22 2.26 2.26

13 2.04 — — —

14 2.06 — — —

15 2.06 — — —

Solutions forn = 2, € = &
Solutions were found for magnetic Reynolds numbers of 10, 20, 30, 40, 50 and 60. In all cases
the eigenvalue p = o +iw wasreal, indicating that the field simply grows or decays with time, with
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no oscillation or rotation. The growth rate o is plotted against Ry in figure 3; these results were
obtained using 25 grid points and harmonics up to degree 6. There is a steady state near Ry = 53.
The field for this value of R at the same level of approximation is shown in figure 4. The radial
variation seems to be well represented by 25 grid points, and the harmonics of degree 6 are quite
small.

The numerical convergence of these solutions requires a rigorous check because so many
disasters have occurred already. There are three sources of errors: an insufficient number of
harmonics, an insufficient number of grid points, and rounding errors. Each of these has been
checked, either by taking more harmonics, more grid points, or repeating some of the calculations
in double precision. The results at R = 60 are summarized in table 3. This eigenvalue has con-
verged to two decimal places, but this is not the significant criterion for convergence. The growth
rate for the largest magnetic Reynolds number will be the most inaccurate of all the points on
the curve of o'(Rm) in figure 3. This view is confirmed by examining the convergence of the values
for Ry = 40 and Ry = 50 in table 4. Therefore the error in the growth rate for Ry = 60 defines
limits for the true position of the whole curve shown in figure 3. The error in the growth rate
should therefore be compared with =% to give a true estimate of the convergence. Alternatively,
if one expresses the convergence in terms of the magnetic Reynolds number for a steady state
(as Lilley (1970) does), the result will depend on the gradient of the curve as it crosses the axis.
Here it appears to have converged to about 0.02 %,, which is much better than previous estimates
of convergence of this number. It is possible to extrapolate from the table of eigenvalues to find
a more accurate estimate of the growth rate, but this provides no more information about either
the convergence, or the mechanism of the dynamo.

TABLE 4. TESTS OF CONVERGENCE FOR 7 = 2, € = %

Ry =40
l , o
6 25 —4.86
8 51 —4.17
Ry = 50
6 25 —1.85
8 51 —0.78
10 51 —1.06

Figure 4 also contains the field for Ry = 60 at the higher level of approximation / = 10,
nr = 51. These eigenvectors have been normalized so that the sum of the absolute values of the
first 12 harmonics is proportional to the number of grid points used, making the total area under
the first twelve curves the same in both cases. The agreement between these two sets of curves is
very good considering that the difference between the two levels of approximation is almost a
factor of 2 both in the number of grid points and the number of harmonics. The first-degree
harmonics 8% and 77 are the largest ones. This was expected, although the # = 2 motion is by
no means small scale. The magnitudes of the harmonics of degrees 9 and 10 are about 19 of
the first degree ones.

The one calculation carried out in double precision was the largest that could be done with the
computing facilities available. The agreement with the single precision calculation is very good,
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which suggests that all the single precision values up to that level of approximation will be satis-
factory. The higher calculations will be more susceptible to rounding errors and could not be
checked, but they show no signs of accumulating errors.

It is difficult to establish whether the eigenvalues have a small or a zero imaginary part.
The method used to check for convergence of the inverse iteration scheme was to subtract
successive approximations to the eigenvector and average the moduli of the resulting com-
ponents. This number was required to be less than a certain test value. In single precision the
computer kept 7 significant figures, so that in taking the modulus the imaginary part of the
eigenvector has no significance ifit is less than 10~ of the real part. In double precision 16 signifi-
cant figures are kept, and an imaginary part less than 108 times the real part has no significance.
For both the single and double precision calculations carried out, the imaginary parts of the eigen-
vectors had no significance. The eigenvalues are deduced to be real, and in §4 arguments are put
forward to show that this should always be the case when # is even.

growth rate

Ficure 5. Growth rate as a function of magnetic Reynolds number for the
model with n = 4, ¢ = 5.

TABLE 5. TESTS OF CONVERGENCE WITH 7 = 4, € = 55, R, = 40

i, = 25 51

=6 —0.72 —
8 — —0.90
(—0.90)
10 — —3.41
12 — —3.44

Solutions for n = 4, € =
The eigenvalues for this model are plotted against Rm in figure 5 for the approximation
[ = 6, nr = 25. There is a steady solution near Ry = 40. The convergence of this solution was
studied; the results are in table 5. The field for the approximation with / = 12, n, = 51 and
Ry = 40 is shown in figure 6. It is comprised mainly of the two first degree harmonics $fand T7.
Also notice that the ‘small-scale’ field, that is the one on the same scale as the velocity with har-
monics of degrees 3, 4 and 5, is small scale in the radial direction as well as with 6,.
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Solutions for n = 6, € = 4

Growth rates and the corresponding fields were calculated using harmonics up to degree 8
and 51 grid points. The plot of growth rate against R is shown in figure 7. The field is steady near
Ry = 30, and this solution was tested for convergence. The results are shown in table 6. The
rounding errors are more severe, although the double precision calculation should be accurate.
Fifty-one grid points seem adequate, but the convergence as the number of harmonics is increased
is poor.

TABLE 6. TESTS OF CONVERGENCE FOR 72 = 6, € = 4%, R, = 30

n, = 51 99
=8 1.20 1.27
(1.09)
10 3.14 —_
12 — —0.71
ar
0 ! ! ! | 1 /O j
10 20 30
Rm
8
8 —4
k=
z .
2
on
~ 8-
O
—-12L.

Ficure 7. Growth rate as a function of magnetic Reynolds number

= = -1
for the case n = 6, € = 3.

The field for the ! = 12, ny = 99 and the [ = 8, n, = 51 approximations are shown in figure 8.
The agreement between the two approximations is not very good. The degree 2 harmonics are
as large as those of degree 1, which may be why the convergence in this case is not as good as the
others. It also shows that a full examination of the field is much more revealing than merely
looking at the eigenvalues.

Solutions for a modified velocity with n = 6 and € = 35

Some calculations were carried out with a velocity which has the form (3.1) but with radial

function.
—~rsinnrrtanhan(1—7). (3.5)

This velocity has a discontinuity in the meridional components at r = 0, but in spite of this
there is no problem in solving the equations. The solutions are similar to those for the previous
motion, but one calculation is included here because of the improved convergence that can be
obtained for n = 6. The extra power of 7 in velocity (3.1) has the effect of making the field a more
rapidly varying function of position near the boundary of the sphere, so that numerical representa-
tion is more difficult there.

37 Vol. 274. A.
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The value of € chosen for the model was 5%. The steady state is near R = 16. This is about half
the corresponding value for the original velocity, which is reasonable because the extra power
of rin (3.1) will reduce the typical scale of the velocity by half. The solution at R = 16 converges
well, as is shown in table 7. The first degree harmonics for the field are the dominant ones, all the
others are very much smaller in size. The radial functions all behave well at the origin; a close
examination shows that those for the two first-degree harmonics satisfy the requirements:

Sio(r) = 0(r%), T7°(r) = 0(r®).

TABLE 7. TESTS OF CONVERGENGE FOR THE MODIFIED VELOCITY,
WITH 7 = 6, € = 45 AND R, = 16

ne = 51 99

/=8 1.25 1.40

9 1.97 —
(1.96)

10 1.97 —

12 — 2.05

This concludes the demonstrations of convergence. It is convincing not only because the
answers are well behaved, but also because they fit with what one would expect on theoretical
grounds. With the possible exception of the third model, these results are incomparably better
than any of those in §2.

It is possible to solve the two simplified equations (1.5) and (1.6) for both the small- and large-
scale fields by a spherical harmonic expansion similar to the Bullard—-Gellman technique for the
induction equation. It is reasonable to suppose that the large-scale field can be represented
accurately by a sum of harmonics with degrees 1 to s, where s < n.n appears in the velocity (3.1)
and defines the small-length scale. The small-scale field can be represented by a sum of harmonics
with degrees near n. Consider equation (1.6). Small-scale field B’ is produced directly from the
interaction between u and B, the interaction between © and the small-scale field being neglected.
There are selection rules (Bullard & Gellman 1954, rules 1 () and 2 (4)) which only allow inter-
actions between harmonics with degrees that can form the sides of a triangle, and so B’ in equa-
tion (1.6) will only contain harmonics with degrees #n—s to n+s.

This proposed solution of the equations (1.5) and (1.6) is exactly equivalent to a Bullard—
Gellman solution of the induction equation in which certain interactions are neglected. First,
all field harmonics with degrees other than 1 to s or n—s to n+s are neglected. Of all the inter-
actions between these harmonics, the only ones to be retained are those that produce harmonics
of one band from harmonics of the other, that is through the terms u x B, or © x B’. Other inter-
actions, such as the production of large degree harmonics from other large degree harmonics
(the term u x B’ —u x B’) are neglected.

Taking n = 6 and only first degree harmonics for B, (s = 1), there is a simple interaction dia-
gram, shown in figure 9. The arrows denote whether small- or large-scale field is being produced,
and the velocity harmonic is written next to it. When the second- and third-degree harmonics are
included in the series for B, the two-scale approximation breaks down altogether because both
B, and B’ have third-degree harmonics; their length scales overlap. Itis clear now that when the
full induction equation is solved for this problem with # = 6, up to degree 8 for example, it only
accounts for the maintenance of the first- and second-degree harmonics of B, plus some, but not
all, of the interactions maintaining the third degree harmonics.

37-2
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This approximate method of solution has been applied to the second velocity (3.5) withn = 6
and ¢ = 5. An examination of the field for this solution suggests that B, might be represented by
the first degree harmonics alone, and therefore harmonics of degrees 5 to 7 are adequate for the
small-scale fields. Fifty grid points were used to solve the equations. The eigenvalues are shown in
figure 10, where they may be compared with the full solutions reported earlier. The agreement is
generally very good, and as would be expected the differences increase as Rp increases.

Ficure 9. Interactions between the first degree harmonics and the small scale field
for the S, Ty dynamo.
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Ficure 10. Growth rate as a function of magnetic Reynolds number for the case n = 6, € = % and velocity (3.5)
for three different approximations: @, by the approximate method with s = 1 (see text); ¢, [ = 8,
n, = b1; A, ! =12, n = 99.
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This approximate method of solution corroborates the view that these dynamos do work on a
two-scale mechanism. The solution with #n = 6 appears to be accurate, and one would expect
this accuracy to improve as n increases. It therefore offers a quick way of investigating dynamos
with large z, which would not be possible by solving the full problem. It has been used successfully
on dynamos with = 8, 10 and 12.

4. PHYSICAL PROPERTIES OF THE AXIALLY SYMMETRIC DYNAMOS

Having solved the difficult problem of the convergence of the numerical methods, the physical
properties of these dynamos may be investigated more fully. Both types of velocity studied
depend on the parameters z and e. The product ze is the estimate of the ratio of poloidal motion
to toroidal motion.

A suitable definition is needed for the magnetic Reynolds number Ry = £%|A, and there is a
problem in the choice of the scale of the velocity. Two scales are available that are not trivially
related to each other. One possibility is to choose: % = sup |u|. Alternatively, we may take % = 1.
Problems arise because the maximum values of the Legendre functions depend on n:

n= 2 4 6 8 10 12
[P2(cos 0) |max 1.50 2.64 3.80 4.96 6.12 7.28

Therefore magnetic Reynolds numbers of dynamos with different values of n are compared, the
result will depend on the definition used for Rm. The latter definition seems the best and is the
one used here.

Initially the calculations were restricted to even n, which always have real time constants for
the field, and for which steady solutions exist for some value of Rm. Once the eigenvalues are
known to be real it is possible to save a factor of two in computer storage. A useful parameter is
the critical magnetic Reynolds number, Rg,, which is the value of Ri for which the field is steady.
It is a function of # and €, and is a gauge of the efficiency of the dynamo.

The dependence of RS, on 7 and € can be studied numerically, and may also be estimated from
the two-scale approximation. First consider the validity of equations (1.5) and (1.6) in view of
the results already obtained in §3. The essential requirements are that

|B'| <|By|, [VB'| VB,

and the fields calculated in §3 do seem to have this property. However, the assumptions made
are adequate provided that the magnetic Reynolds number based on the small length scale,
that is Rm/n, is small. This is not true for the solutions of § 3, where

Rufn 2 1.

This quantity would appear to be too large for the two-scale method to work; z needs to be at
least an order of magnitude larger to make Ry/n small. This important point is discussed later.

‘Taking the radius of the sphere to be unity and following either Childress (1967) or Moffatt
(1970), we may deduce an order of magnitude estimate for B’:

' 1 —
IB | :mu.curlulBol. (4.1)
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A similar result applies for isotropic turbulence, and also it can be assumed to hold for the
motions in (3.1) and (3.5) provided 7 is large cnough. For these motions

u.curlu ~ n2cu,

where #, is the typical toroidal velocity. For a stcady solution, equation (1.5) gives:

ue
'% | Bo| ~ A| By

and therefore R = %” ~ 21; (4.2)

The critical magnetic Reynolds number should be independent of 7 for this choice of motion.

Values of the critical magnetic Reynolds number for velocity (3.5) at threc values of € are
shown in table 8, and for velocity (3.1) at two values of ¢ in table 9. R§, was cstimated very
approximately from the curve of growth rate against Ry. These tables demonstrate the most
important and interesting properties of the dynamos. R§, is roughly constant, although it is larger
for smaller numbers of cells. This may be duc to the definition of Rm, or it may be an effect duc to
the boundaries. As n increases, RS, appears to settle down to a finite limit rather than to zero or
infinity.

For motion (3.5) there are only growing solutions for a band of values of n at any fixed value
of €. Table 8 suggests that, for this motion at lcast, ficlds can only be supported for a certain range
of the paramecter ne. For thosc solutions that do have growing ficlds, the dependence of Rf on ¢
agrees qualitatively with the expected ¢~# variation.

TaABLE 8. VARIATION O RS, WITII 7 AND ¢ FOR VELOCITY (3.5)

n =2 4 6 8 10 12
€= 33 16 12 12.5 no positive solution found
7% no positive solution found 15 13 11.5 12
o no positive solution found 26 18 16 16
TABLE 9. VARIATION OF R$, WITH 7 AND ¢ FOR VELOCITY (3.1).
NUMBERS IN BRACKETS ARE UNCERTAIN
n=2 3 4 6 8 10 12
¢ =1Y 60 30 — 20 solutions unreliable
w5 no positive growth 40 30 (21) (22) (23)
found

A motion with onc radial cell and two angular (0) cells was investigated and docs not appcear
to work at any magnetic Reynolds number. The motion is given by

u=ecS,+1T,

with radial function —r2sinnrtanhnr(1—7r). There was no positive growth rate for € = %

Occasionally secondary solutions have been found that have a smaller growth rate than the
onc of primary interest. This suggests that there arc other modes which decay morc rapidly
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than the principal one, perhaps corresponding to a different decay mode of a solid sphere.
These modes certainly exist for a-effect dynamos, but they have not been studied in detail in
these numerical models.

The cutoff function tanhnm(1—7) was removed for some of the calculations. The resulting
fields had sharp gradients near the boundaries, and the convergence of the solutions was poor,
showing that it is desirable to have zero gradient in the angular velocity at the boundary. A
finite shear at the boundary produces a toroidal field there, which creates numerical problems
when the boundary conditions are applied.

When the parameter ne exceeds a certain critical value the solutions take on a rope-like struc-
ture. This is because the poloidal motion in any one of the cells is strong enough to expel the
magnetic flux into narrow regions at the cell boundaries. This expulsion of flux by eddies has
been studied by Weiss (1966) and R. L. Parker (1966).

Ste Tie
1 0
6=
0 —e -3
1 0
=
0 -4
1 E 0
€= % i
0 __-_L._E —10

Ficure 11. Radial functions for the St and T} harmonics for velocity (3.5), n = 6 and three values of €. The
expulsion of toroidal flux may be seen as € is increased.

Consider, for example, the solution for velocity (3.5), n = 6 and € = 3. For small ¢ the ficld
is comprised mainly of the first-degree harmonics. Of these the toroidal field is directed, for the
most part, across the eddies and will be expelled by them if the motion is vigorous enough.
On the other hand, the poloidal field is largely parallel to the eddies and will be little affected
by them.

Figure 11 illustrates this expulsion of flux. The main poloidal and toroidal fields are compared
for n = 6, Rm = 16 and three values of e. At this magnetic Reynolds number, the lower two
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fields belong to growing solutions but the upper one is decaying. The cell boundaries are marked
with dotted lines. Clearly the toroidal flux is being expelled into narrow regions which are exactly
on the cell boundaries. The dipole field is only slightly affected.

The field must also be forced into cones of constant @, which are cell boundaries as well as the
spherical shells of constant r marked by dotted lines in figure 1. The numerical representation of
such a field requires a large number of grid points and harmonics. This presents considerable
numerical problems, and the results are inconclusive. There may be sufficient grid points for the
sample calculation in figure 11, but certainly degree 12 in the harmonics is not enough when
the flow contains harmonics of degree 6.

It is possible to obtain reasonably convergent solutions with large values of € when n = 2,
but because there are only four cells in this motion it is not really typical of small scale dynamos.
Results have been obtained for both velocities:

l 1, o
velocity (3.1) n = 2,6 =4;Ry =30 6 25 1.83
8 51 3.76
velocity (3.5) n= 2,6 = };Rn =20 6 25 —19.71
8 51 —16.70
10 51 —-17.19

Fieure 12. Radial function for the T} harmonic for velocity (3.1), n = 2, ¢ = }.

0 4 8 12 16 20
—10 I I T T T T T R | T
...12 -
5}
8 --14+
Y
g 1L
g .
n<(51,8)
0<(51,10
_sl (51,10
o0k «(25,6)

Ficure 13. Growth rate as a function of magnetic Reynolds number for velocity (3.1), n = 2,6 = §.
Values in parentheses give n, and /.
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Figure 12 shows the radial function of the toroidal field for the first case. The flux is concentrated
near 7 = 0.5, the cell boundaries. Numerical difficulties have prevented establishing whether or
not velocity (3.5) can support fields when e is large. The plot of o(Rm) for this flow when n = 2,
e = 1is shown in figure 13, together with the values used to check the convergence. There is no
sign that the growth rate becomes positive, or even exceeds the value —=? that characterises a
sphere with no motion.

— 1
12 E-_—_'_'}.
1
8- 5
4 1
/OB
| ]

growth rate

Ficure 14. Growth rate as a function of magnetic Reynolds number for velocity (3.1),
n = 2 and three values of €.

The results for velocity (3.1) are completely different. Figure 14 shows the graphs of o(Rm)
for n = 2 and three values of €. There is a shape to each curve which is typical of all the solutions
found. For small R, the growth rate falls below — =2, then it rises. All of these dynamos seem to
work satisfactorily, and calculations done on dynamos with z = 4 and n = 6 and large values of ¢
up to unity seem to work, but the numerical convergence is unreliable.

No satisfactory explanation can be offered for the difference between the solutions. It is diffi-
cult to see how the discontinuity at the origin for velocity (3.5) can alter the dynamo action so
drastically. The iteration scheme may have crossed over to a different eigenvalue, but in several
cases searches have been carried out for larger eigenvalues without success. The problem of main-
tenance of a field with a rope-like structure is a new one which needs more investigation.

When e (or ne) was very small, positive growth rates could not be found (tables 8 and 9).
Again numerical problems arise because the critical magnetic Reynolds numbers are so high, but
for sufficiently large R, the growth rate should become positive.

When 7 is odd, the velocity defined by (3.1) gives the whole sphere a net angular velocity about
the axis of symmetry. The field must be stationary in the frame of reference in which an appropri-
ate weighted zonal velocity is zero. All such mean rotations must be zero for flows with z even
because of the symmetry about the equator, but this is not the case when 7z is odd, and the field
must therefore rotate.

Complex harmonics were used in the Bullard-Gellman expansions for the calculations carried

38 Vol. 274. A.
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out when 7z is odd. The eigenvalues for n = 3 are complex, showing that the field does indeed

rotate: Rm o o (p = o+iw)
n=36=1% 10 —11.66 0.53
20 —6.89 0.89
40 8.57 1.43

It is possible to construct motions which have rotating fields, but also have zero mean angular
rotation because of symmetry about the equator. An example is

u= €S1+ Tz. (4.3)

This has helicity of opposite signs in the upper and lower hemispheres, which would be physically
realistic if these were cyclonic motions. These motions have bands of adjacent cells at the equator
which have opposite helicity. This also occurs in some of Roberts’ ‘second-order’ dynamos
(G. O.Roberts 1969, 1970), for which the time constants are complex and dynamo waves occur.
For two-dimensional motions dependent on x and y, these waves travel in the z-direction. For
motions in a sphere dependent on 7 and ¢, they must travel in the ¢-direction giving a rotation.

The interaction diagrams (Bullard & Gellman 1954) are instructive here. A rotating solution
must have for each spherical harmonic, both sin ¢ and cos ¢ dependence. For example, a rotating
equatorial dipole may be written as the real part of

(S%o + S{s) elwt
where Si¢ is based on the (complex) radial function $(r), and S7° is based on 18(r). When n is
even, each harmonic has either sin ¢ dependence or cos ¢ dependence but never both, and there-
fore the symmetry of the problem does not admit rotating solutions.

For motions such as (4.3), the interaction diagrams contains both sine and cosine dependent
harmonics, and therefore rotating solutions are possible. Assuming that an a-effect is operating,
the field will be an equatorial dipole S}¢ accompanied by a quadrupole toroidal field Ti°. The
sense of rotation depends on the signs of« in each hemisphere. If« is positive in the upper hemi-
sphere the field will rotate in one sense; if it is negative in the upper hemisphere it will rotate in
the opposite sense. The two dynamos are related to each other by reflexion (helicity is a pseudo-
scalar).

The difficulty in doing calculations is to find suitable velocities which have a simple spherical
harmonic form, similar to (3.1) but ones in which the helicity changes sign across the equator.
The motion (4.3), based on 72 sin 2rr tanh 27(1 —r) with ¢ = {4, does not appear to work as a

dynamo: Run o v
10 —15.25 0.23
20 —25.25 —4.23
30 —34.31 —6.63
40 —42.22 —8.09

although the eigenvalue is complex. The only dynamo of this sort that was found to work was:

u=eS,+T,
with four cells radially and € = 545
Rp o w
10 —11.43 0.24
20 —13.21 0.37
30 —11.87 0.92
40 —5.88 -2.10
50 2.39 —2.76
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This is not a good example of this sort of dynamo because the cells for the poloidal motion do not
correspond with the cells for the toroidal motion. However, it is an approximation to a dynamo
with an a which changes sign. The field is mostly Si¢ and T}i° as expected. The behaviour of the
imaginary part is strange, it may be because of poor convergence. This model also has a net angu-
lar rotation, and it cannot be proved that the rotation of the field is not due to that.

Ficure 15. Field lines are pulled out and twisted by the motion. The field is initially uniform as shown
to the left of the sphere. After reconnexion a toroidal field will be formed as shown.

It is now possible to account for the dynamo action of all the models reported here, on physical
grounds. The field is regarded as being convected and distorted by the fluid motion. Consider
an initial field line perpendicular to the axis of symmetry of the motion. The fluid motion, such
as that of figure 2, will distort this field. Within any one cell of the motion, the field will be pulled
out into loops in the ¢-direction by the toroidal motion, and twisted by the poloidal motion. The
result of this process is shown in figure 15. Thick lines indicate a ficld line in front of the paper.
Reconnexion must occur at some point, when it does the new field will reinforce upwards in
front of the paper and downwards behind it, except near the boundaries. The net result is some-
thing like the toroidal field shown at the left of the sphere. In figure 15 the field has been depicted
as being twisted through a right angle for clarity. This is an oversimplification, but in any case the
only directions in which the field can reinforce are those shown in the diagram.

The same mechanism will reproduce the original field from the toroidal field, completing a
cycle from which the dynamo would be expected to work. It is two-step process, or to use the
terminology of P. H. Roberts & Stix (1972) an ‘a?’ dynamo.

Whena is not uniform but changes sign across the equator, the situation is as shown in figure 16.
The field will reinforce to give the T3 harmonic. Itis the behaviour near the equator which allows
the field to rotate. At the equatorial plane there are two rows of cells with opposite helicity, as
there are in some of the motions that give dynamo waves (G. O.Roberts 1969). It can be seen
from figure 16 that the field at the equator can reconnect to contribute towards a dipole field in
the direction out of the paper. This possibility of regenerating a dipole field perpendicular to the

38-2
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original one is corroborated by the presence of this harmonic in the interaction diagram. With
an axially symmetric velocity the choice of direction of the initial field is arbitrary, and therefore
ifa dipole field is produced perpendicular to the original one, a rotating solution must be possible.

5. DIsCcUSSION

This work has shown that it is more profitable to search for fields which have an exponential
time dependence than for steady fields. However, the method will be of less value when applied
to problems with magnetic fields containing harmonics with more than a single order (in this case
the harmonics were all of order one). For example a general rotating field cannot be represented
by a single exponential in time. It may be that the dynamos of § 2 support time dependent fields
which cannot be detected by the numerical method used.

Ficure 16. The advection of flux by a motion for which the helicity has different signs in the upper and lower
hemispheres. The field will reconnect to form a T} harmonic as shown to the left of the sphere. It can be seen
that in the equatorial plane a field may be produced perpendicular to the original field. This is substantiated
by the interaction diagram, in which the S$1° harmonic interacts with the §%° harmonic.

Some of the solutions for the field in §3 and 4 closely resemble spherical Bessel functions. This
suggests that Bessel functions may be preferable to grid points in representing the radial varia-
tion of the field as originally suggested by Elsasser (19464). In general this would destroy the
banded structure of the matrix, but for some specific fluid motions the matrix may be made sparse.

The work of § 3 is related to that of Frazer (1971) who studied some models of the form:

u = 682+ T2.

However, his motions only had one cell in the radial direction, and like the one reported in §3,
did not sustain magnetic fields.

The axially symmetric dynamos may be rotated through }= to make the magnetic field pre-
dominantly axially symmetric about & = 0. The velocity becomes symmetric about an axis in
the equatorial plane. The spherical harmonic flow

u= 82+ T3
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can be generated from S, + T, in this way. The field has dominant harmonics S, and T,. Pekeris
(1972, personal communication), has recently studied such a dynamo model.

The author wishes to thank his research supervisor, Sir Edward Bullard, F.R.S., for his help
and encouragement, and Dr G. O. Roberts for a stimulating discussion and for advising him on
the use of this method for finding eigenvalues of matrices. Most of the calculations were carried
out on the IBM 360/44 computer at the Institute of Theoretical Astronomy, Cambridge, and
thanks are due to Mr N. J. Butler and his staff for providing such an efficient service. The work
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